Orientation-aware Vehicle Re-identification with Semantics-guided Part Attention Network

Tsai-Shien Chen, Chih-Ting Liu, Chih-Wei Wu, and Shao-Yi Chien

Graduate Institute of Electronic Engineering, National Taiwan University NTU IoX Center, National Taiwan University

Motivation

1. Generate part attention maps to disentangle global and local feature

2. Emphasize on the co-occurrence part in the compared images

Challenge

Regular Segmentation Network

Only needs image-level semantic label to learn to generate the part attention maps.

Mask Reconstruction Loss

Area Constraint Loss

Spatial Diversity Loss

SPAN can be extended to weakly-supervised segmentation.

2. Emphasize on the co-occurrence part in the compared images

Co-occurrence Part-attentive Distance Metric

Co-occurrence Part-attentive Distance Metric

Architecture of proposed framework

Comparison with the State-of-the-Arts

CityFlow-ReID Dataset

Comparison with the State-of-the-Arts

Compare to OIFE [ICCV17]

Compare to VAMI [CVPR18]

*The demonstrated attention maps generated by previous methods are directly from their papers.

unstable

VAMI

VAMI

16TH EUROPEAN CONFERENCE ON COMPUTER VISION

WWW.ECCV2020.EU

